Firstpost
  • Home
  • Video Shows
    Vantage Firstpost America Firstpost Africa First Sports
  • World
    US News
  • Explainers
  • News
    India Opinion Cricket Tech Entertainment Sports Health Photostories
  • Asia Cup 2025
Apple Incorporated Modi ji Justin Trudeau Trending

Sections

  • Home
  • Live TV
  • Videos
  • Shows
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Health
  • Tech/Auto
  • Entertainment
  • Web Stories
  • Business
  • Impact Shorts

Shows

  • Vantage
  • Firstpost America
  • Firstpost Africa
  • First Sports
  • Fast and Factual
  • Between The Lines
  • Flashback
  • Live TV

Events

  • Raisina Dialogue
  • Independence Day
  • Champions Trophy
  • Delhi Elections 2025
  • Budget 2025
  • US Elections 2024
  • Firstpost Defence Summit
Trending:
  • Nepal protests
  • Nepal Protests Live
  • Vice-presidential elections
  • iPhone 17
  • IND vs PAK cricket
  • Israel-Hamas war
fp-logo
Could rotating black holes be gentle portals for hyperspace travel in the future?
Whatsapp Facebook Twitter
Whatsapp Facebook Twitter
Apple Incorporated Modi ji Justin Trudeau Trending

Sections

  • Home
  • Live TV
  • Videos
  • Shows
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Health
  • Tech/Auto
  • Entertainment
  • Web Stories
  • Business
  • Impact Shorts

Shows

  • Vantage
  • Firstpost America
  • Firstpost Africa
  • First Sports
  • Fast and Factual
  • Between The Lines
  • Flashback
  • Live TV

Events

  • Raisina Dialogue
  • Independence Day
  • Champions Trophy
  • Delhi Elections 2025
  • Budget 2025
  • US Elections 2024
  • Firstpost Defence Summit
  • Home
  • Tech
  • science
  • Could rotating black holes be gentle portals for hyperspace travel in the future?

Could rotating black holes be gentle portals for hyperspace travel in the future?

The Conversation • April 10, 2019, 20:01:50 IST
Whatsapp Facebook Twitter

Black holes are considered potential shortcuts through spacetime to cross cosmic distances.

Advertisement
Subscribe Join Us
Add as a preferred source on Google
Prefer
Firstpost
On
Google
Could rotating black holes be gentle portals for hyperspace travel in the future?

One of the most cherished science fiction scenarios is using a black hole as a portal to another dimension or time or universe. That fantasy may be closer to reality than previously imagined. Black holes are perhaps the most mysterious objects in the universe. They are the consequence of gravity crushing a dying star without limit, leading to the formation of a true singularity – which happens when an entire star gets compressed down to a single point yielding an object with infinite density. This dense and hot singularity punches a hole in the fabric of spacetime itself, possibly opening up an opportunity for hyperspace travel. That is, a short cut through spacetime allowing for travel over cosmic scale distances in a short period. Researchers previously thought that any spacecraft attempting to use a black hole as a portal of this type would have to reckon with nature at its worst. The hot and dense singularity would cause the spacecraft to endure a sequence of increasingly uncomfortable tidal stretching and squeezing before being completely vaporized. _**Also check out:**_ _**Stunning images of black holes we've never actually seen**_

Flying through a black hole

My team at the University of Massachusetts Dartmouth and a colleague at Georgia Gwinnett College have shown that all black holes are not created equal. If the black hole like Sagittarius A*, located at the center of our own galaxy, is large and rotating, then the outlook for a spacecraft changes dramatically. That’s because the singularity that a spacecraft would have to contend with is very gentle and could allow for a very peaceful passage. The reason that this is possible is that the relevant singularity inside a rotating black hole is technically “weak,” and thus does not damage objects that interact with it. At first, this fact may seem counter-intuitive. But one can think of it as analogous to the common experience of quickly passing one’s finger through a candle’s near 2,000-degree flame, without getting burned.

Hold your finger close to the flame and it will burn. Swipe it through quickly and you won’t feel much. Similarly, passing through a large rotating black hole, you are more likely to come out the other side unharmed. Image:  mirbasar/Shutterstock.com

My colleague Lior Burko and I have been investigating the physics of black holes for over two decades. In 2016, my Ph.D. student, Caroline Mallary, inspired by Christopher Nolan’s blockbuster film “ Interstellar": set out to test if Cooper (Matthew McConaughey’s character), could survive his fall deep into Gargantua – a fictional, supermassive, rapidly rotating black hole some 100 million times the mass of our sun. “Interstellar” was based on a book written by Nobel Prize-winning astrophysicist Kip Thorne and Gargantua’s physical properties are central to the plot of this Hollywood movie. Building on work done by physicist Amos Ori two decades prior, and armed with her strong computational skills, Mallary built a computer model that would capture most of the essential physical effects on a spacecraft, or any large object, falling into a large, rotating black hole like Sagittarius A*. [caption id=“attachment_6420231” align=“alignnone” width=“1280”]The fictional Miller’s planet orbiting the black hole ‘Gargantua’ in the movie Interstellar. Image: Interstellarfilm.wikia.com/Paramount Pictures The fictional Miller’s planet orbiting the black hole ‘Gargantua’ in the movie Interstellar. Image: Interstellarfilm.wikia.com/Paramount Pictures[/caption]

Not even a bumpy ride?

What she discovered is that under all conditions an object falling into a rotating black hole would not experience infinitely large effects upon passage through the hole’s so-called inner horizon singularity. This is the singularity that an object entering a rotating black hole cannot maneuver around or avoid. Not only that, under the right circumstances, these effects may be negligibly small, allowing for a rather comfortable passage through the singularity. In fact, there may no noticeable effects on the falling object at all. This increases the feasibility of using large, rotating black holes as portals for hyperspace travel. Mallary also discovered a feature that was not fully appreciated before: the fact that the effects of the singularity in the context of a rotating black hole would result in rapidly increasing cycles of stretching and squeezing on the spacecraft. But for very large black holes like Gargantua, the strength of this effect would be very small. So, the spacecraft and any individuals on board would not detect it. [caption id=”" align=“aligncenter” width=“600”] This graph depicts the physical strain on the spacecraft’s steel frame as it plummets into a rotating black hole. The inset shows a detailed zoom-in for very late times. The important thing to note is that the strain increases dramatically close to the black hole, but does not grow indefinitely. Therefore, the spacecraft and its inhabitants may survive the journey. Image: Khanna/UMassD[/caption] The crucial point is that these effects do not increase without bound; in fact, they stay finite, even though the stresses on the spacecraft tend to grow indefinitely as it approaches the black hole. There are a few important simplifying assumptions and resulting caveats in the context of Mallary’s model. The main assumption is that the black hole under consideration is completely isolated and thus not subject to constant disturbances by a source such as another star in its vicinity or even any falling radiation. While this assumption allows important simplifications, it is worth noting that most black holes are surrounded by cosmic material – dust, gas, radiation. Therefore, a natural extension of Mallary’s work would be to perform a similar study in the context of a more realistic astrophysical black hole. Mallary’s approach of using a computer simulation to examine the effects of a black hole on an object is very common in the field of black hole physics. Needless to say, we do not have the capability of performing real experiments in or near black holes yet, so scientists resort to theory and simulations to develop an understanding, by making predictions and new discoveries.The Conversation Gaurav Khanna, Professor of Physics, University of Massachusetts Dartmouth This article is republished from The Conversation under a Creative Commons license. Read the original article. Black hole event horizon: Also read

  • This is the first image of a black hole captured using a global network of telescopes
  • First-ever direct photograph of black hole M87 event horizon revealed
  • Stunning images of black holes we’ve never actually seen
  • First image of black hole helps confirm Einstein's general relativity theory
Tags
Astronomy Space Milky Way Black holes Black hole astrophysics Event Horizon SciTech The Conversation Event Horizon Telescope Black hole event horizon Milky Way Black Hole first image of black hole black hole image black hole image release who discovered black holes how are black holes formed black hole facts black hole theory black hole video types of black holes black hole event horizon image black hole image release date image of black hole what is black hole first black hole image event horizon telescope black hole photo
End of Article
Latest News
Find us on YouTube
Subscribe
End of Article

Top Stories

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Who is CP Radhakrishnan, India's next vice-president?

Who is CP Radhakrishnan, India's next vice-president?

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Who is CP Radhakrishnan, India's next vice-president?

Who is CP Radhakrishnan, India's next vice-president?

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Top Shows

Vantage Firstpost America Firstpost Africa First Sports
Latest News About Firstpost
Most Searched Categories
  • Web Stories
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Tech/Auto
  • Entertainment
  • IPL 2025
NETWORK18 SITES
  • News18
  • Money Control
  • CNBC TV18
  • Forbes India
  • Advertise with us
  • Sitemap
Firstpost Logo

is on YouTube

Subscribe Now

Copyright @ 2024. Firstpost - All Rights Reserved

About Us Contact Us Privacy Policy Cookie Policy Terms Of Use
Home Video Shorts Live TV