Firstpost
  • Home
  • Video Shows
    Vantage Firstpost America Firstpost Africa First Sports
  • World
    US News
  • Explainers
  • News
    India Opinion Cricket Tech Entertainment Sports Health Photostories
  • Asia Cup 2025
Apple Incorporated Modi ji Justin Trudeau Trending

Sections

  • Home
  • Live TV
  • Videos
  • Shows
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Health
  • Tech/Auto
  • Entertainment
  • Web Stories
  • Business
  • Impact Shorts

Shows

  • Vantage
  • Firstpost America
  • Firstpost Africa
  • First Sports
  • Fast and Factual
  • Between The Lines
  • Flashback
  • Live TV

Events

  • Raisina Dialogue
  • Independence Day
  • Champions Trophy
  • Delhi Elections 2025
  • Budget 2025
  • US Elections 2024
  • Firstpost Defence Summit
Trending:
  • Nepal protests
  • Nepal Protests Live
  • Vice-presidential elections
  • iPhone 17
  • IND vs PAK cricket
  • Israel-Hamas war
fp-logo
Indian scientists find out molecular mechanism behind the dormant Tuberculosis bacteria
Whatsapp Facebook Twitter
Whatsapp Facebook Twitter
Apple Incorporated Modi ji Justin Trudeau Trending

Sections

  • Home
  • Live TV
  • Videos
  • Shows
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Health
  • Tech/Auto
  • Entertainment
  • Web Stories
  • Business
  • Impact Shorts

Shows

  • Vantage
  • Firstpost America
  • Firstpost Africa
  • First Sports
  • Fast and Factual
  • Between The Lines
  • Flashback
  • Live TV

Events

  • Raisina Dialogue
  • Independence Day
  • Champions Trophy
  • Delhi Elections 2025
  • Budget 2025
  • US Elections 2024
  • Firstpost Defence Summit
  • Home
  • Tech
  • science
  • Indian scientists find out molecular mechanism behind the dormant Tuberculosis bacteria

Indian scientists find out molecular mechanism behind the dormant Tuberculosis bacteria

India Science Wire • July 16, 2019, 16:22:46 IST
Whatsapp Facebook Twitter

A protein molecule called MPT63 secreted by the bacteria maybe playing a role in the release process.

Advertisement
Subscribe Join Us
Add as a preferred source on Google
Prefer
Firstpost
On
Google
Indian scientists find out molecular mechanism behind the dormant Tuberculosis bacteria

Tuberculosis infection results in approximately nine million new cases worldwide every year. The TB-causing bacterium can remain dormant in the human body for a long time, even for several decades before it becomes infectious. The bacterium remains ensconced within a type of white blood cells called macrophages when it is in its latent form. A team of researchers from Kolkata-based CSIR-Indian Institute of Chemical Biology, Bose Institute and Jadavpur University have figured out how tuberculosis bacterium is released from its reservoir inside the human body. A macrophage, in fact, is an important part of the immune system. The word ‘macrophage’ literally means a ‘big eater’. It is an amoeba-like organism and its job is to clean the body of microscopic debris and invaders. It has an innate ability to locate and consume invaders such as bacteria, viruses, fungi, and parasites. However, the story is different with TB bacterium. Instead of killing it, the macrophage creates a sac-like formation called granuloma around it. Granuloma keeps the bacillus contained and under control. The equilibrium can last for even several decades until it gets broken leading to the release of infectious bacteria into the human body. This can happen due to several reasons such as lowered immunity because of physical weakness or infections such as HIV. [caption id=“attachment_7003001” align=“alignnone” width=“1280”]Mycobacterium tuberculosis Bacteria. Image Credit: NIAID/Flickr Representational image. Image Credit: NIAID/Flickr[/caption] Scientists globally have been trying to figure out the molecular mechanism of the release of infectious TB bacteria from the granuloma. The new study by Kolkata researchers could fill this knowledge gap. The team has discovered that a protein molecule called MPT63 secreted by the bacteria may be playing a role in the release process. Synthetically produced MPT63 protein molecule was subjected to different levels of acidity and it was found that when the acidity value is high its structure changed dramatically. It started as what is called a beta-sheet and it turned into a helical form in the acidic condition, which prevails in matured granuloma. The protein, which was found to have no apparent function in the folded beta-sheet, suddenly became toxic on assuming the helical form, and got into the cell membrane, leading to the formation of pores and consequently the death of the host cells and release of the bacteria. “Our team would now try to validate these findings in field strains of TB bacillus and see whether they can be used to develop new therapeutic interventions,” said Dr Krishnananda Chattopadhyay, Head of Structural Biology and Bioinformatics Division at IICB and team leader, while speaking to India Science Wire. Besides him, the team consisted of Achinta Sannigrahi, Indrani Nandi, Sayantani Chall, Junaid Jibran Jawed, and Animesh. Halder, Subrata Majumdar, Sanat Karmakar. The study results will soon be published in journal ACS Chemical Biology.

Tags
HIV/AIDS Tuberculosis immunity Virus Protein CSIR TB Macrophage molecular mechanism
End of Article
Latest News
Find us on YouTube
Subscribe
End of Article

Top Stories

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Who is CP Radhakrishnan, India's next vice-president?

Who is CP Radhakrishnan, India's next vice-president?

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Who is CP Radhakrishnan, India's next vice-president?

Who is CP Radhakrishnan, India's next vice-president?

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Top Shows

Vantage Firstpost America Firstpost Africa First Sports
Latest News About Firstpost
Most Searched Categories
  • Web Stories
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Tech/Auto
  • Entertainment
  • IPL 2025
NETWORK18 SITES
  • News18
  • Money Control
  • CNBC TV18
  • Forbes India
  • Advertise with us
  • Sitemap
Firstpost Logo

is on YouTube

Subscribe Now

Copyright @ 2024. Firstpost - All Rights Reserved

About Us Contact Us Privacy Policy Cookie Policy Terms Of Use
Home Video Shorts Live TV