Firstpost
  • Home
  • Video Shows
    Vantage Firstpost America Firstpost Africa First Sports
  • World
    US News
  • Explainers
  • News
    India Opinion Cricket Tech Entertainment Sports Health Photostories
  • Asia Cup 2025
Apple Incorporated Modi ji Justin Trudeau Trending

Sections

  • Home
  • Live TV
  • Videos
  • Shows
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Health
  • Tech/Auto
  • Entertainment
  • Web Stories
  • Business
  • Impact Shorts

Shows

  • Vantage
  • Firstpost America
  • Firstpost Africa
  • First Sports
  • Fast and Factual
  • Between The Lines
  • Flashback
  • Live TV

Events

  • Raisina Dialogue
  • Independence Day
  • Champions Trophy
  • Delhi Elections 2025
  • Budget 2025
  • US Elections 2024
  • Firstpost Defence Summit
Trending:
  • Charlie Kirk shot dead
  • Nepal protests
  • Russia-Poland tension
  • Israeli strikes in Qatar
  • Larry Ellison
  • Apple event
  • Sunjay Kapur inheritance row
fp-logo
Deep sea microbes helps scientists unlock mystery of transitioning from simple cells to complex life
Whatsapp Facebook Twitter
Whatsapp Facebook Twitter
Apple Incorporated Modi ji Justin Trudeau Trending

Sections

  • Home
  • Live TV
  • Videos
  • Shows
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Health
  • Tech/Auto
  • Entertainment
  • Web Stories
  • Business
  • Impact Shorts

Shows

  • Vantage
  • Firstpost America
  • Firstpost Africa
  • First Sports
  • Fast and Factual
  • Between The Lines
  • Flashback
  • Live TV

Events

  • Raisina Dialogue
  • Independence Day
  • Champions Trophy
  • Delhi Elections 2025
  • Budget 2025
  • US Elections 2024
  • Firstpost Defence Summit
  • Home
  • Tech
  • science
  • Deep sea microbes helps scientists unlock mystery of transitioning from simple cells to complex life

Deep sea microbes helps scientists unlock mystery of transitioning from simple cells to complex life

Reuters • January 17, 2020, 11:34:11 IST
Whatsapp Facebook Twitter

Evolutionary shift from simple bacteria-like cells to first fungi, plants and animals, 2 billion years ago has left us stumped.

Advertisement
Subscribe Join Us
Add as a preferred source on Google
Prefer
Firstpost
On
Google
Deep sea microbes helps scientists unlock mystery of transitioning from simple cells to complex life

A microorganism scooped up in deep-sea mud off Japan’s coast has helped scientists unlock the mystery of one of the watershed evolutionary events for life on Earth: the transition from the simple cells that first colonized the planet to complex cellular life - fungi, plants and animals including people. Researchers said on Wednesday they were able to study the biology of the microorganism, retrieved from depths of about 2.5 km, after coaxing it to grow in the laboratory. They named it Prometheoarchaeum syntrophicum, referring to the Greek mythological figure Prometheus who created humankind from clay and stole fire from the gods. [caption id=“attachment_7919381” align=“alignnone” width=“1280”]Explaining the transiting from simple cells to complex life forms. Image credit: Youtube Explaining the transiting from simple cells to complex life forms, around two billion years ago. Image credit: Youtube[/caption] Prometheoarchaeum’s spherical cell - with a diameter of roughly 500 nanometers, or one-20,000th of a centimeter - boasts long, often branching tentacle-like appendages on its outer surface. It is part of a group called Archaea, relatively simple single-cell organisms lacking internal structures such as a nucleus. Scientists have long puzzled over the evolutionary shift from such simple bacteria-like cells to the first rudimentary fungi, plants and animals - a group called eukaryotes - perhaps two billion years ago. Based on a painstaking laboratory study of Prometheoarchaeum and observations of its symbiotic - mutually beneficial - relationship with a companion bacterium, the researchers offered an explanation. They proposed that appendages like those of Prometheoarchaeum entangled a passing bacterium, which was then engulfed and eventually evolved into an organelle - internal structure - called a mitochondrion that is the powerhouse of a cell and crucial for respiration and energy production. The solar system including Earth formed 4.5 billion years ago. The first life on Earth, simple marine microbes, appeared roughly four billion years ago. The later advent of eukaryotes set in motion evolutionary paths that led to a riotous assemblage of organisms over the eons like palm trees, blue whales, T. rex, hummingbirds, clownfish, shiitake mushrooms, lobsters, daisies, woolly mammoths and Marilyn Monroe. “How we - as eukaryotes - originated is a fundamental question related to how we - as humans - came to be,” said microbiologist Masaru Nobu of Japan’s National Institute of Advanced Industrial Science and Technology, one of the leaders of the study published in the journal Nature.

Prometheoarchaeum is a member of a subgroup called Asgard archaea - named for the dwelling place of the gods in Norse mythology. Other members of this subgroup were retrieved from the frigid seabed near a hydrothermal vent system called Loki’s Castle, named after a Norse mythological figure, between Greenland and Norway. The research on Prometheoarchaeum, Nobu said, indicates that the Asgard archaea are the closest living relatives to the first eukaryotes. The researchers used a submersible research vessel to collect mud containing Prometheoarchaeum from the Omine Ridge off Japan in 2006. They studied it in the laboratory in a years-long process and watched it slowly proliferate after incubating the samples in a vessel infused with methane gas to simulate the deep-sea marine sediment environment in which it resides. [caption id=“attachment_7919351” align=“alignnone” width=“1000”]A scanning electron microscopy image of the single-celled organism Prometheoarchaeum syntrophicum strain MK-D1 showing the cell with tentacle-like branching protrusions. Image credit: JAMSTEC A scanning electron microscopy image of the single-celled organism Prometheoarchaeum syntrophicum strain MK-D1 showing the cell with tentacle-like branching protrusions. Image credit: JAMSTEC[/caption] “We were able to obtain the first complete genome of this group of archaea and conclusively show that these archaea possess many genes that had been thought to be only found in eukaryotes,” Nobu said. Prometheoarchaeum was found to be reliant on its companion bacterium. “The organism ‘eats’ amino acids through symbiosis with a partner,” Nobu said. “This is because the organism can neither fully digest amino acids by itself, gain energy if any byproducts have accumulated, nor build its own cell without external help.”

Tags
Solar System bacteria s Evolution microorganism simple cell Prometheoarchaeum syntrophicum microorganism from the deep sea in Japan tentacle like appendages The solar system including Earth formed 4.5 billion years ago simple marine microbes appeared roughly four billion years ago
End of Article
Latest News
Find us on YouTube
Subscribe
End of Article

Top Stories

Charlie Kirk, shot dead in Utah, once said gun deaths are 'worth it' to save Second Amendment

Charlie Kirk, shot dead in Utah, once said gun deaths are 'worth it' to save Second Amendment

From governance to tourism, how Gen-Z protests have damaged Nepal

From governance to tourism, how Gen-Z protests have damaged Nepal

Did Russia deliberately send drones into Poland’s airspace?

Did Russia deliberately send drones into Poland’s airspace?

Netanyahu ‘killed any hope’ for Israeli hostages: Qatar PM after Doha strike

Netanyahu ‘killed any hope’ for Israeli hostages: Qatar PM after Doha strike

Charlie Kirk, shot dead in Utah, once said gun deaths are 'worth it' to save Second Amendment

Charlie Kirk, shot dead in Utah, once said gun deaths are 'worth it' to save Second Amendment

From governance to tourism, how Gen-Z protests have damaged Nepal

From governance to tourism, how Gen-Z protests have damaged Nepal

Did Russia deliberately send drones into Poland’s airspace?

Did Russia deliberately send drones into Poland’s airspace?

Netanyahu ‘killed any hope’ for Israeli hostages: Qatar PM after Doha strike

Netanyahu ‘killed any hope’ for Israeli hostages: Qatar PM after Doha strike

Top Shows

Vantage Firstpost America Firstpost Africa First Sports
Latest News About Firstpost
Most Searched Categories
  • Web Stories
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Tech/Auto
  • Entertainment
  • IPL 2025
NETWORK18 SITES
  • News18
  • Money Control
  • CNBC TV18
  • Forbes India
  • Advertise with us
  • Sitemap
Firstpost Logo

is on YouTube

Subscribe Now

Copyright @ 2024. Firstpost - All Rights Reserved

About Us Contact Us Privacy Policy Cookie Policy Terms Of Use
Home Video Shorts Live TV