Biggest, brightest explosions in the universe need stars to partner up, study says

Biggest, brightest explosions in the universe need stars to partner up, study says

The findings solve a long-held mystery about how stars spin fast enough to launch high-energy jets into space.

Advertisement
Biggest, brightest explosions in the universe need stars to partner up, study says

A recent study by the University of Warwick observes that stars need to be in binary systems to create gamma-ray bursts. Gamma-ray bursts are the universe’s brightest explosions, caused by massive collapsing stars. Thousands of binary star systems were modelled for the study and found that the tidal effects from a companion star keep the collapsing star spinning and producing a jet of material.

Advertisement

The University’s astronomers suggest that the biggest and brightest explosions seen in the universe take two stars to make a gamma-ray burst.

The new research solves the mystery of how stars spin fast enough to create conditions to launch a jet of highly energetic material into space and has found that tidal effects like those between the Moon and the Earth are the answer.

The discovery, reported in Monthly Notices of the Royal Astronomical Society , is made using simulated models of thousands of binary star systems, that is, solar systems that have two stars orbiting one another.

Two neutron stars collided for the first time in space, causing gravitational waves, a burst of light and precious metals to be sprinkled across the universe. Image: ESO

More than half of all stars are located in binary star systems. This new research shows that they need to be in binary star systems in order for the massive explosions to be created. A long gamma-ray burst (GRB), the type examined in this study, occurs when a massive star about ten times the size of our Sun goes supernova, collapses into a neutron star or black hole and fires a relativistic jet of material into space.

Advertisement

Instead of the star collapsing radially inwards, it flattens down into a disc to conserve angular momentum. As the material falls inwards, that angular momentum launches it in the form of a jet along the polar axis.

But in order to form that jet of material, the star has to be spinning fast enough to launch material along the axis. This presents a problem because stars usually lose any spin they acquire very quickly. By modelling the behaviour of these massive stars as they collapse, the researchers have been able to constrain the factors that cause a jet to be formed.

Advertisement

They found that the effects of tides from a close neighbour — the same effect that has the Moon and the Earth locked together in their spin — could be responsible for spinning these stars at the rate needed to create a gamma-ray burst.

Gamma-ray bursts are the most luminous events in the universe and are observable from Earth when their jet of material is pointed directly at us. This means that we only see around 10-20 per cent of the GRBs in our skies.

Advertisement

Lead author Ashley Chrimes, a PhD student in the University of Warwick Department of Physics, shared, “We’re predicting what kind of stars or systems produce gamma-ray bursts, which are the biggest explosions in the universe. Until now it’s been unclear what kind of stars or binary systems you need to produce that result.

Advertisement

“The question has been how a star starts spinning or maintains its spin over time. We found that the effect of a star’s tides on its partner is stopping them from slowing down and, in some cases, it is spinning them up,” Ashley added.

He further said, “They are stealing rotational energy from their companion, a consequence of which is that they then drift further away. What we have determined is that the majority of stars are spinning fast precisely because they’re in a binary system.”

Advertisement
The pair of strange, luminescent creatures at play in this image are actually galaxies — realms of millions upon millions of stars. This galactic duo is known as UGC 2369. The galaxies are interacting, meaning that their mutual gravitational attraction is pulling them closer and closer together and distorting their shapes in the process. A tenuous bridge of gas, dust, and stars can be seen connecting the two galaxies,, during which they pulled material out into space across the diminishing divide between them.  Interaction with others is a common event in the history of most galaxies. For larger galaxies like the Milky Way, the majority of these interactions involve significantly smaller so-called dwarf galaxies. But every few aeons, a more momentous event can occur. For our home galaxy, the next big event will take place in about four billion years, when it will collide with its bigger neighbour, the Andromeda Galaxy. Over time, the two galaxies will likely merge into one — already nicknamed Milkomeda. Image: ESA/Hubble/NASA

The study uses a collection of binary stellar evolution models created by researchers from the University of Warwick and Dr JJ Eldridge from the University of Auckland.

Using a technique called binary population synthesis, the scientists are able to simulate this mechanism in a population of thousands of star systems and so identify the rare examples where an explosion of this type can occur.

Advertisement

Dr Elizabeth Stanway, from the University of Warwick Department of Physics, said, “Scientists haven’t modelled in detail for binary evolution in the past because it’s a very complex calculation to do.”

According to Stanway, this work has considered a physical mechanism within those models that we haven’t examined before, that suggests that binaries can produce enough GRBs using this method to explain the number that we are observing.

Advertisement

She also feels that there has also been a big dilemma over the metallicity of stars that produce gamma-ray bursts. As astronomers, we measure the composition of stars and the dominant pathway for gamma-ray bursts requires very few iron atoms or other heavy elements in the stellar atmosphere.

There’s been a puzzle over why we see a variety of compositions in the stars producing gamma-ray bursts, and this model offers an explanation.

Advertisement

Ashley further explained, “This model allows us to predict what these systems should look like observationally in terms of their temperature and luminosity, and what the properties of the companion are likely to be. We are now interested in applying this analysis to explore different astrophysical transients, such as fast radio bursts, and can potentially model rarer events such as black holes spiralling into stars.

Advertisement
Latest News

Find us on YouTube

Subscribe

Top Shows

Vantage First Sports Fast and Factual Between The Lines