Firstpost
  • Home
  • Video Shows
    Vantage Firstpost America Firstpost Africa First Sports
  • World
    US News
  • Explainers
  • News
    India Opinion Cricket Tech Entertainment Sports Health Photostories
  • Asia Cup 2025
Apple Incorporated Modi ji Justin Trudeau Trending

Sections

  • Home
  • Live TV
  • Videos
  • Shows
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Health
  • Tech/Auto
  • Entertainment
  • Web Stories
  • Business
  • Impact Shorts

Shows

  • Vantage
  • Firstpost America
  • Firstpost Africa
  • First Sports
  • Fast and Factual
  • Between The Lines
  • Flashback
  • Live TV

Events

  • Raisina Dialogue
  • Independence Day
  • Champions Trophy
  • Delhi Elections 2025
  • Budget 2025
  • US Elections 2024
  • Firstpost Defence Summit
Trending:
  • Nepal protests
  • Nepal Protests Live
  • Vice-presidential elections
  • iPhone 17
  • IND vs PAK cricket
  • Israel-Hamas war
fp-logo
Bacteria have a bigger role to play in future climate warming than we think, suggests new research
Whatsapp Facebook Twitter
Whatsapp Facebook Twitter
Apple Incorporated Modi ji Justin Trudeau Trending

Sections

  • Home
  • Live TV
  • Videos
  • Shows
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Health
  • Tech/Auto
  • Entertainment
  • Web Stories
  • Business
  • Impact Shorts

Shows

  • Vantage
  • Firstpost America
  • Firstpost Africa
  • First Sports
  • Fast and Factual
  • Between The Lines
  • Flashback
  • Live TV

Events

  • Raisina Dialogue
  • Independence Day
  • Champions Trophy
  • Delhi Elections 2025
  • Budget 2025
  • US Elections 2024
  • Firstpost Defence Summit
  • Home
  • Tech
  • science
  • Bacteria have a bigger role to play in future climate warming than we think, suggests new research

Bacteria have a bigger role to play in future climate warming than we think, suggests new research

Asian News International • November 18, 2019, 14:39:50 IST
Whatsapp Facebook Twitter

Prokaryotes will evolve to be more efficient at warmer temperatures, thereby increasing their metabolism and carbon output.

Advertisement
Subscribe Join Us
Add as a preferred source on Google
Prefer
Firstpost
On
Google
Bacteria have a bigger role to play in future climate warming than we think, suggests new research

The manner in which bacteria and related organisms release carbon dioxide into the air can contribute to a rise in global warming faster than the current rate, according to new research. The research could help to inform more accurate models of future climate warming. The results of the study were published in the journal Nature Communications. As bacteria adapt to hotter temperatures, they speed up their respiration rate and release more carbon, potentially accelerating climate change. Bacteria and archaea, collectively known as prokaryotes, are present on every continent and makeup around half of the global biomass — the total weight of all organisms on Earth. Most prokaryotes perform respiration that uses energy and releases carbon dioxide — just like we do when we breathe out. The amount of carbon dioxide released during a given time period depends on the prokaryote’s respiration rate, which can change in response to temperature. [caption id=“attachment_7667891” align=“alignnone” width=“1280”]An image of an infectious Streptococcus pyogenes bacterial colony under the microscope. Image: Getty An image of an infectious Streptococcus pyogenes bacterial colony under the microscope. Image: Getty[/caption] However, the exact relationship between temperature, respiration rate, and carbon output has been uncertain. Now, by bringing together a database of respiration rate changes according to temperature from 482 prokaryotes, researchers have found the majority will increase their carbon output in response to higher temperatures to a greater degree than previously thought. Lead researcher Dr Samraat Pawar, from the Department of Life Sciences at Imperial, said: “In the short term, on a scale of days to hours, individual prokaryotes will increase their metabolism and produce more carbon dioxide. However, there is still a maximum temperature at which their metabolism becomes inefficient. “In the longer term, over years, these prokaryote communities will evolve to be more efficient at higher temperatures, allowing them to further increase their metabolism and their carbon output. The researchers compiled prokaryote responses to temperature changes from across the world and in all different conditions — from salty Antarctic lakes below 0-degree Celcius to thermal pools above 120-degree Celsius. They found that prokaryotes that usually operate in a medium temperature range — below 45-degree Celcius — show a strong response to changing temperature, increasing their respiration in both the short term (days to weeks) and long term (months to years). [caption id=“attachment_7668271” align=“alignnone” width=“1280”]Phytoplankton bloom in the Chukchi Sea in 2018. Image courtesy: Norman Kuring/NASA’s Ocean Color Web/Landsat data/US Geological Survey Phytoplankton bloom in the Chukchi Sea in 2018. Image courtesy: Norman Kuring/NASA’s Ocean Color Web/Landsat data/US Geological Survey[/caption] Prokaryotes that operate in higher temperature ranges — above 45-degree Celcius — did not show such a response, but since they operate at such high temperatures, to begin with, they are unlikely to be impacted by climate change. The short-term responses of medium-temperature prokaryotes to warming were larger than those reported for eukaryotes – organisms with more complex cells, including all plants, fungi, and animals. Lead author of the new research, PhD student Thomas Smith from the Department of Life Sciences, said: “Most climate models assume that all organisms’ respiration rates respond to temperature in the same way, but our study shows that bacteria and archaea are likely to depart from the ‘global average’. “Importantly for future climate predictions, we would also like to know how the numbers of prokaryotes, and their abundance within local ecosystems, might change with increasing temperatures.”

Tags
climate change Carbon dioxide bacteria Life Sciences Samraat Pawar prokaryotes
End of Article
Latest News
Find us on YouTube
Subscribe
End of Article

Top Stories

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Who is CP Radhakrishnan, India's next vice-president?

Who is CP Radhakrishnan, India's next vice-president?

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Israel targets top Hamas leaders in Doha; Qatar, Iran condemn strike as violation of sovereignty

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Nepal: Oli to continue until new PM is sworn in, nation on edge as all branches of govt torched

Who is CP Radhakrishnan, India's next vice-president?

Who is CP Radhakrishnan, India's next vice-president?

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Israel informed US ahead of strikes on Hamas leaders in Doha, says White House

Top Shows

Vantage Firstpost America Firstpost Africa First Sports
Latest News About Firstpost
Most Searched Categories
  • Web Stories
  • World
  • India
  • Explainers
  • Opinion
  • Sports
  • Cricket
  • Tech/Auto
  • Entertainment
  • IPL 2025
NETWORK18 SITES
  • News18
  • Money Control
  • CNBC TV18
  • Forbes India
  • Advertise with us
  • Sitemap
Firstpost Logo

is on YouTube

Subscribe Now

Copyright @ 2024. Firstpost - All Rights Reserved

About Us Contact Us Privacy Policy Cookie Policy Terms Of Use
Home Video Shorts Live TV