Everything Electric: How to go about achieving an all-electric future within the next decade

The lithium-ion battery system which is the centremost element of the electrical transition has a limited shelf life.


As the global energy crisis deepens and a diabolical shift in world climate stares us in the face, switching to cleaner, greener and renewable sources of energy is the most imperative need of the hour. Therefore, concerned lobbies around the world are championing for a major shift from fuel and gas to an exclusively electric technology. The electric vehicle (EV) technology is a step in the same direction as it is the emissions from conventional vehicles that run essentially on fossil fuels for operation that are among the leading causes of the energy and climate change conundrum.

Everything Electric: How to go about achieving an all-electric future within the next decade

An electric tram on the streets of Kolkata in 1945.

A Greenpeace report shows that a shocking 22 out of the world’s 30 most air-polluted cities are in India. As per a report released by the environmental body Centre for Science and Environment (CSE), air pollution is now the third-highest cause of death among all health risks ranking in India. Exposure to unhealthy air has brought down life expectancy in India by 2.6 yrs. These statistics are enough to send a shudder through the spine of anyone who cares about sustaining life on this planet. The need to tackle the situation headlong and with immediate effect is of vital importance.

Role of government policy

Since such a massive change from traditional modes of technology to new and unconventional ones cannot be shepherded by individual entities alone, the responsibility of ushering in such a transformation falls on the shoulders of governments around the world. Some governments offer several impetuses to furthering a general public adoption of the EV technology seeking to cut down on air pollution and oil consumption figures by either offsetting the cost of purchase by an added grant, or by the lowering of certain taxes and even exemption from a few.

An electric auto rickshaw in Siliguri. image credit: Wikipedia

An electric auto rickshaw in Siliguri. image credit: Wikipedia

Looking from the global perspective, only a few countries like Norway have successfully managed to usher in the all-electric transition as about 60 percent of the cars sold during the March of 2019 were purely electric. The manifestation of such a change was attributed to certain key economic factors and not just environmental reasons alone as the government of Norway acting out of practical wisdom made EVs much more affordable than conventional fuel-run ICEs (Internal Combustible Engine). This obviously led to a stark increase in the demand for EVs as in a period of merely five years, the EVs sales rose significantly from 5.5 percent to 31.2 percent.

The REVAi, an electric car manufactured in India by RECC. image credit: Mic

The REVAi, an electric car manufactured in India by RECC. image credit: Mic

Even the People's Republic of China has been a vigorous advocate for an all-electric transition of transport and other associated technologies by developing policies that seek to ameliorate the EV scene while issuing a favourable and cost-effective policy. We as neighbours look to gain much by taking a step in the same direction.

This year the finance minister of India issued a multiplicity of attractive incentives in the economic budget with the aim of popularizing the use of EVs and bringing about an all-electric transition. The incentives included a reduction in tax on loans for EVs, a decrease in the import duty of certain key components, a reduction in the GST rate on EVs from 12 percent to 5 percent, and from 18 percent to 5percent on EV chargers.

Government think tank Niti Aayog has firmly called for a nationwide, all-electric three-wheeler adoption by 2023, and for two-wheeler adoption by 2025.

Current trends

The future of transportation and general mobility is essentially electric and the recently developed battery swapping technology will pave the way forward. Battery swapping not only reduces the waiting period for charging but also brings down the cost of two and three-wheelers as the vehicle is now sold sans the battery (the battery itself amounting to about 40 percent of the total cost of EVs). The battery swapping technology essentially depends on the ability to anticipate, administer and amplify the life of the Li-Ion (Lithium Ion) battery which is the nucleus of the EV technology and the all-electric transition.

The state government of Tamil Nadu too has made a laudable proposal of 100 percent road tax exemption on electric cars until 2022, a move that is sure to boost the switch from ICEs (Internal Combustion Engines) to EVs. The present overall cost of Lithium-ion batteries, the seminal and key component of an electric vehicle, too has witnessed a drastic four-fifth reduction since 2010. EV production units have realised the need for next-generation technology and cutting-edge solutions to speedily stimulate the electric mobility transition. Besides electric cars and hybrid saloons, e-cycles, e-scooters and grid-scale batteries are also acquiring impetuous.

Energy storage and battery tech improvisation

The lithium-ion battery system which is the centremost and intrinsic element of this global electrical transition, unfortunately, has a limited shelf life. Therefore, the need to optimize these for higher scalability and sustainability is most imperative. Thus, it becomes critical to analyse and keep in mind the various internal and external factors that impact battery life. A battery management system (BMS) or the brain of the battery comes chiefly into play here as it accurately estimates the essential stats of the battery. With the help of collected data, current capacity, usage patterns, and SoH (state of health) algorithms, the BMS predicts the battery’s lifespan and all-round functioning based on past data.

An electric car charging.

An electric car charging.

This calls for better and advanced versions of the lithium-ion configuration in the battery with a special focus directed on the second life of batteries, battery recycling and repurposing through accurate estimation and identification of battery life.

Role of AI and data analytics

The global electric transition as discussed before depends chiefly on lithium-ion batteries while these batteries or energy storage units rely on data, the buzzword of the modern age. The battery data is most crucial to the EV and energy storage space providers for fleet optimising, swift deployment, higher uptime and improved overall life of the battery, which accounts for more than 45 percent of the cost of an EV.

Thus, by a synchronized synthesis of battery domain knowledge alongside technological advances in the field of data analytics, simulations and machine learning, one can ensure the maximum optimisation of the li-ion batteries, which in turn helps in accelerating the traditional modes of mobility and associated businesses into an all-electric future.

Data sciences, AI and the internet of things (IoT) are seemingly revolutionising the EV sector as of now and are responsible for laying the groundwork towards an all-electric transition in the near future. The battery data that is derived through the assemblage of these technologies helps garner valuable insights that are seminal to the determination and improvement of battery life and performance. This not only decreases the overall user cost but also reduces the overall planetary dependence on fossil fuels for a plethora of energy needs.

Machine learning and AI are assisting EVs and ESS purveyors in recognising patterns and conditions while forecasting battery life decay. These technologies impart prognostic readings and potential signs of warning while also sending over-the-air updates to the stakeholders of energy, which results in a remarkable reduction in overhead costs.

To conclude, one arrives at a conjecture that strategically beneficial government policies, the advancement of renewable energy sources, greater affordability, innovation in electronics, energy storage and battery technology will assay a vital role in ushering a swift transition from a fuel-based system to an exclusively all-electric dimension.

Akhil Aryan is the CEO and Co-Founder of ION Energy, an advanced battery management and intelligence platform.